Iverson's Language - significado y definición. Qué es Iverson's Language
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es Iverson's Language - definición

MATHEMATICAL NOTATION: [P] HAS THE VALUE 1 IF P IS TRUE, AND 0 IF P IS FALSE
Iverson convention; Iversonian bracket; Iverson's convention; Iverson notation (mathematics)

Iverson's Language      
APL, which went unnamed for many years. [Sammet 1969, p.770]. (1994-11-16)
Endangered language         
LANGUAGE THAT IS AT RISK OF FALLING OUT OF USE
Endangered languages; Moribund language; Language endangerment; Endangered Language; The Rarest Language in the World; Vulnerable language; Severely endangered language; Definitely endangered language; Critically endangered language; Endangered language survey
An endangered language or moribund language is a language that is at risk of disappearing as its speakers die out or shift to speaking other languages. Language loss occurs when the language has no more native speakers and becomes a "dead language".
Nafanan language         
SENUFO LANGUAGE
Nafaara language; ISO 639:nfr; Nafaanra language; Nafana language; Fantera language; Pantera language; Nafaanra
Nafaanra (sometimes written Nafaara, pronounced ) or Nafanan is a Senufo language spoken in northwest Ghana, along the border with Ivory Coast, east of Bondoukou. It is spoken by approximately 61,000 people.

Wikipedia

Iverson bracket

In mathematics, the Iverson bracket, named after Kenneth E. Iverson, is a notation that generalises the Kronecker delta, which is the Iverson bracket of the statement x = y. It maps any statement to a function of the free variables in that statement. This function is defined to take the value 1 for the values of the variables for which the statement is true, and takes the value 0 otherwise. It is generally denoted by putting the statement inside square brackets:

In other words, the Iverson bracket of a statement is the indicator function of the set of values for which the statement is true.

The Iverson bracket allows using capital-sigma notation without restriction on the summation index. That is, for any property P ( k ) {\displaystyle P(k)} of the integer k {\displaystyle k} , one can rewrite the restricted sum k : P ( k ) f ( k ) {\displaystyle \sum _{k:P(k)}f(k)} in the unrestricted form k f ( k ) [ P ( k ) ] {\displaystyle \sum _{k}f(k)\cdot [P(k)]} . With this convention, f ( k ) {\displaystyle f(k)} does not need to be defined for the values of k for which the Iverson bracket equals 0; that is, a summand f ( k ) [ false ] {\displaystyle f(k)[{\textbf {false}}]} must evaluate to 0 regardless of whether f ( k ) {\displaystyle f(k)} is defined.

The notation was originally introduced by Kenneth E. Iverson in his programming language APL, though restricted to single relational operators enclosed in parentheses, while the generalisation to arbitrary statements, notational restriction to square brackets, and applications to summation, was advocated by Donald Knuth to avoid ambiguity in parenthesized logical expressions.